Категории магазина
Наши рекомендации

 

KNOPKA-otziv
 

 кнопка Ответим в вотсапе ​

кнопка Ответим в вотсапе

УЧАЧТВУЕМ.ГОСЗАК


« Назад

Сканеры отпечатков пальцев - ознакомительная статья  11.01.2011 05:55

Идентификация человека по отпечаткам пальцев является самой недорогой, распространенной, очень надежной и эффективной биометрической технологией. За счет того, что  эта технология универсальна - она может применяться практически в любой сфере и для решения любой задачи, где необходима идентификация пользователей.

Технология идентификации по отпечаткам пальцев возможна благодаря тому, что отпечатки пальцев каждого человека уникальны по рисунку папиллярных линий и не меняются в течении жизни.

Все существующие на сегодняшний день сканеры отпечатков пальцев по используемым ими физическим принципам можно выделить в три группы:

  1. оптические;
  2. кремниевые (или полупроводниковые);
  3. ультразвуковые.

Оптические сканеры

В основе работы оптических сканеров лежит оптический метод получения изображения. По видам используемых технологий можно выделить следующие группы оптических сканеров:

1. FTIR-сканеры - устройства, в которых используется эффект нарушенного полного внутреннего отражения (Frustrated Total Internal Reflection, FTIR).

При падении света на границу раздела двух сред световая энергия делится на две части: одна отражается от границы, другая - проникает через границу раздела во вторую среду. Доля отраженной энергии зависит от угла падения. Начиная с некоторой его величины, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением. Однако при контакте более плотной оптической среды (в нашем случае поверхность пальца) с менее плотной (в практической реализации, как правило, поверхность призмы) в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся только пучки света, попавшие в такие точки полного внутреннего отражения, к которым не были приложены бороздки папиллярного узора поверхности пальца. Для фиксации получившейся световой картинки поверхности пальца используется специальная камера (ПЗС или КМОП в зависимости от реализации сканера).

2. Оптоволоконные сканеры (fiber optic scanners) - представляют собой оптоволоконную матрицу, каждое из волокон которой заканчивается фотоэлементом.

Чувствительность каждого фотоэлемента позволяет фиксировать остаточный свет, проходящий через палец, в точке прикосновения рельефа пальца к поверхности сканера. Изображение отпечатка пальца формируется по данным каждого из элементов.


3. Электрооптические сканеры (electro-optical scanners) основаны на использовании специального электрооптического полимера, в состав которого входит светоизлучающий слой.

При прикладывании пальца к сканеру неоднородность электрического поля у его поверхности (разность потенциалов между бугорками и впадинами) отражается на свечении этого слоя так, что он высвечивает отпечаток пальца. Затем массив фотодиодов сканера преобразует это свечение в цифровой вид.


4. Оптические протяжные сканеры (sweep optical scanners) в целом аналогичны FTIR-устройствам.

Их особенность в том, что палец нужно не просто прикладывать к сканеру, а проводить им по узкой полоске - считывателю. При движении пальца по поверхности сканера делается серия мгновенных снимков (кадров). При этом соседние кадры снимаются с некоторым наложением, т. е. перекрывают друг друга, что позволяет значительно уменьшить размеры используемой призмы и самого сканера. Для формирования (точнее сборки) изображения отпечатка пальца во время его движения по сканирующей поверхности кадрам используется специализированное программное обеспечение.


5. Роликовые сканеры (roller-style scanners). В этих миниатюрных устройствах сканирование пальца происходит при прокатывании пальцем прозрачного тонкостенного вращающегося цилиндра (ролика).


Во время движения пальца по поверхности ролика делается серия мгновенных снимков (кадров) фрагмента папиллярного узора, соприкасающегося с поверхностью. Аналогично протяжному сканеру соседние кадры снимаются с наложением, что позволяет без искажений собрать полное изображение отпечатка пальца. При сканировании используется простейшая оптическая технология: внутри прозрачного цилиндрического ролика находятся статический источник света, линза и миниатюрная камера. Изображение освещаемого участка пальца фокусируется линзой на чувствительный элемент камеры. После полной «прокрутки» пальца, «собирается картинка» его отпечатка.

6. Бесконтактные сканеры (touchless scanners). В них не требуется непосредственного контакта пальца с поверхностью сканирующего устройства.

Палец прикладывается к отверстию в сканере, несколько источников света подсвечивают его снизу с разных сторон, в центре сканера находится линза, через которую, собранная информация проецируется на КМОП-камеру, преобразующую полученные данные в изображение отпечатка пальца.

Полупроводниковые (кремниевые) сканеры

В основе этих сканеров использование для получения изображения поверхности пальца свойств полупроводников, изменяющихся в местах контакта гребней папиллярного узора с поверхностью сканера. В настоящее время существует несколько технологий реализации полупроводниковых сканеров.

1. Емкостные сканеры (capacitive scanners) - наиболее широко распространенный тип полупроводниковых сканеров, в которых для получения изображения отпечатка пальца используется эффект изменения емкости pn-перехода полупроводникового прибора при соприкосновении гребня папиллярного узора с элементом полупроводниковой матрицы.

Существуют модификации описанного сканера, в которых каждый полупроводниковый элемент в матрице сканера выступает в роли одной пластины конденсатора, а палец - в роли другой. При приложении пальца к сенсору между каждым чувствительным элементом и выступом-впадиной папиллярного узора образуется некая емкость, величина которой определяется расстоянием между поверхностью пальца и элементом. Матрица этих емкостей преобразуется в изображение отпечатка пальца.

2. Чувствительные к давлению сканеры (pressure scanners) - в этих устройствах используются сенсоры, состоящие из матрицы пьезоэлементов.

При прикладывании пальца к сканирующей поверхности выступы папиллярного узора оказывают давление на некоторое подмножество элементов поверхности, соответственно впадины никакого давления не оказывают. Матрица полученных с пьезоэлементов напряжений преобразуется в изображение поверхности пальца.

3. Термо-сканеры (thermal scanners) - в них используются сенсоры, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение (этот эффект также используется в инфракрасных камерах).

При прикладывании пальца к сенсору по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца и преобразуется в цифровое изображение.


Данные типы сканеров являются самыми распространенными. Во всех приведенных полупроводниковых сканерах используются матрица чувствительных микроэлементов (тип которых определяется способом реализации) и преобразователь их сигналов в цифровую форму.  


4. Радиочастотные сканеры (RF-Field scanners) - в таких сканерах используется матрица элементов, каждый из которых работает как маленькая антенна.

Сенсор генерирует слабый радиосигнал и направляет его на сканируемую поверхность пальца. Каждый из чувствительных элементов принимает отраженный от папиллярного узора сигнал. Величина наведенной в каждой микроантенне электро-движущая сила (ЭДС) зависит от наличия или отсутствия в близи нее гребня папиллярного узора. Полученная таким образом матрица напряжений преобразуется в цифровое изображение отпечатка пальца.

5. Протяжные термо-сканеры (thermal sweep scanners) - разновидность термо-сканеров, в которых для сканирования (так же как и в оптических протяжных сканерах), необходимо провести пальцем по поверхности сканера, а не просто приложить его.

 


6. Емкостные протяжные сканеры (capacitive sweep scanners) - используют аналогичный способ покадровой сборки изображения отпечатка пальца, но каждый кадр изображения получается с помощью емкостного полупроводникового сенсора.


7. Радиочастотные протяжные сканеры (RF-Field sweep scanners) - аналогичны емкостным, но используют радиочастотную технологию.

Ультразвуковые сканеры

Ультразвуковое сканирование - это сканирование поверхности пальца ультразвуковыми волнами и измерение расстояния между источником волн и впадинами и выступами на поверхности пальца по отраженному от них эху. Качество получаемого таким способом изображения в 10 раз лучше, чем полученного любым другим, представленным на биометрическом рынке методом. Кроме этого, стоит отметить, что данный способ практически полностью защищен от муляжей, поскольку позволяет кроме отпечатка пальца получать и некоторые дополнительные характеристики о его состоянии (например, пульс внутри пальца).

Основное применение технологии распознавания по отпечаткам пальцев - защита от несанкционированного доступа. Чаще используются в охранных системах и системах учета рабочего времени сотрудников.

Система для контроля доступа и учета времени с распознаванием отпечатков пальца

 Система для контроля доступа и учета времени с разпознованием отпечатков пальца - предназначена  для автоматизации пропускного режима на охраняемом объекте и учета рабочего времени персонала с применением технологий идентификации человека по биометрическому признаку (отпечатку пальца).

Возможности Системы контроля доступа и учета времени с распознованием отпечатков пальяца:

  • Контроль и управление доступом - система обеспечивает безопасность, как отдельных помещений, так и всего здания
    • Предотвращает доступ посторонних людей без необходимости использования ключа.
    • Устраняет возможность несанкционированного прохода за пользователем прошедшим верификацию.
    • Позволяет отслеживать перемещение работников по определенным территориям.
    • При настройке функции «часовой пояс» может контролировать доступ работников к определенным территориям.
    • Легко интегрируется с дверными замками (оснащен выходом для ЭМ-замка: пост. напр. 12В при 3A).

 

Учет рабочего времени сотрудников - Система автоматически фиксирует события прихода и ухода, реальное время нахождения сотрудников на рабочем месте. Система учитывает опоздания и переработки, в соответствии с производственным календарем, расписанием и индивидуальным графиком работы каждого сотрудника и/или отдела. Вся информация поступает в единый «Журнал событий», по данным которого формируются все необходимые отчеты 
  • Устраняет возможность ложно зафиксировать посещаемость отсутствующих работников.

  • Систематически собирает и учитывает время посещаемости.

  • Входящее в пакет программное обеспечение быстро и эффективно обрабатывает и управляет данными о посещаемости

В нашем интернет-магазине вы можете приобрести:

 






Присоединяйтесь к нам!

Подпишитесь на получение писем, про новые акции, скидки и горячие предложения!

E-mail:
Новости:
Новинки
  • Мобильный телефон Poco M3 Pro 64GB Power Black

    Мобильный телефон Poco M3 Pro 64GB Power Black
  • Игровой компьютер, SUPERCAR10, i9-9900K/ Z390/RTX2080 8GB

    Игровой компьютер, SUPERCAR10, i9-9900K/ Z390/RTX2080 8GB
  • Игровой компьютер, GAMER-39, AMD Ryzen 5 3600 3,6Гц / RTX2060 STORMX 6G G

    Игровой компьютер, GAMER-39, AMD Ryzen 5 3600 3,6Гц / RTX2060 STORMX 6G G
  • Мобильный телефон, Xiaomi, Mi 11 8GB 256GB

    Мобильный телефон, Xiaomi, Mi 11 8GB 256GB
  • ЧАСЫ VYVO WATCH LITE SE - С МОНИТОРИНГОМ состояние здоровья

    ЧАСЫ VYVO WATCH LITE SE - С МОНИТОРИНГОМ состояние здоровья