Сканеры отпечатков пальцев - ознакомительная статья 11.01.2011 05:55
Идентификация человека по отпечаткам пальцев является самой недорогой, распространенной, очень надежной и эффективной биометрической технологией. За счет того, что эта технология универсальна - она может применяться практически в любой сфере и для решения любой задачи, где необходима идентификация пользователей.
Технология идентификации по отпечаткам пальцев возможна благодаря тому, что отпечатки пальцев каждого человека уникальны по рисунку папиллярных линий и не меняются в течении жизни.
Все существующие на сегодняшний день сканеры отпечатков пальцев по используемым ими физическим принципам можно выделить в три группы:
оптические;
кремниевые (или полупроводниковые);
ультразвуковые.
Оптические сканеры
В основе работы оптических сканеров лежит оптический метод получения изображения. По видам используемых технологий можно выделить следующие группы оптических сканеров:
1. FTIR-сканеры - устройства, в которых используется эффект нарушенного полного внутреннего отражения (Frustrated Total Internal Reflection, FTIR).
При падении света на границу раздела двух сред световая энергия делится на две части: одна отражается от границы, другая - проникает через границу раздела во вторую среду. Доля отраженной энергии зависит от угла падения. Начиная с некоторой его величины, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением. Однако при контакте более плотной оптической среды (в нашем случае поверхность пальца) с менее плотной (в практической реализации, как правило, поверхность призмы) в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся только пучки света, попавшие в такие точки полного внутреннего отражения, к которым не были приложены бороздки папиллярного узора поверхности пальца. Для фиксации получившейся световой картинки поверхности пальца используется специальная камера (ПЗС или КМОП в зависимости от реализации сканера).
2. Оптоволоконные сканеры (fiber optic scanners) - представляют собой оптоволоконную матрицу, каждое из волокон которой заканчивается фотоэлементом.
Чувствительность каждого фотоэлемента позволяет фиксировать остаточный свет, проходящий через палец, в точке прикосновения рельефа пальца к поверхности сканера. Изображение отпечатка пальца формируется по данным каждого из элементов.
3. Электрооптические сканеры (electro-optical scanners) основаны на использовании специального электрооптического полимера, в состав которого входит светоизлучающий слой.
При прикладывании пальца к сканеру неоднородность электрического поля у его поверхности (разность потенциалов между бугорками и впадинами) отражается на свечении этого слоя так, что он высвечивает отпечаток пальца. Затем массив фотодиодов сканера преобразует это свечение в цифровой вид.
4. Оптические протяжные сканеры (sweep optical scanners) в целом аналогичны FTIR-устройствам.
Их особенность в том, что палец нужно не просто прикладывать к сканеру, а проводить им по узкой полоске - считывателю. При движении пальца по поверхности сканера делается серия мгновенных снимков (кадров). При этом соседние кадры снимаются с некоторым наложением, т. е. перекрывают друг друга, что позволяет значительно уменьшить размеры используемой призмы и самого сканера. Для формирования (точнее сборки) изображения отпечатка пальца во время его движения по сканирующей поверхности кадрам используется специализированное программное обеспечение.
5. Роликовые сканеры (roller-style scanners). В этих миниатюрных устройствах сканирование пальца происходит при прокатывании пальцем прозрачного тонкостенного вращающегося цилиндра (ролика).
Во время движения пальца по поверхности ролика делается серия мгновенных снимков (кадров) фрагмента папиллярного узора, соприкасающегося с поверхностью. Аналогично протяжному сканеру соседние кадры снимаются с наложением, что позволяет без искажений собрать полное изображение отпечатка пальца. При сканировании используется простейшая оптическая технология: внутри прозрачного цилиндрического ролика находятся статический источник света, линза и миниатюрная камера. Изображение освещаемого участка пальца фокусируется линзой на чувствительный элемент камеры. После полной «прокрутки» пальца, «собирается картинка» его отпечатка.
6. Бесконтактные сканеры (touchless scanners). В них не требуется непосредственного контакта пальца с поверхностью сканирующего устройства.
Палец прикладывается к отверстию в сканере, несколько источников света подсвечивают его снизу с разных сторон, в центре сканера находится линза, через которую, собранная информация проецируется на КМОП-камеру, преобразующую полученные данные в изображение отпечатка пальца.
Полупроводниковые (кремниевые) сканеры
В основе этих сканеров использование для получения изображения поверхности пальца свойств полупроводников, изменяющихся в местах контакта гребней папиллярного узора с поверхностью сканера. В настоящее время существует несколько технологий реализации полупроводниковых сканеров.
1. Емкостные сканеры (capacitive scanners) - наиболее широко распространенный тип полупроводниковых сканеров, в которых для получения изображения отпечатка пальца используется эффект изменения емкости pn-перехода полупроводникового прибора при соприкосновении гребня папиллярного узора с элементом полупроводниковой матрицы.
Существуют модификации описанного сканера, в которых каждый полупроводниковый элемент в матрице сканера выступает в роли одной пластины конденсатора, а палец - в роли другой. При приложении пальца к сенсору между каждым чувствительным элементом и выступом-впадиной папиллярного узора образуется некая емкость, величина которой определяется расстоянием между поверхностью пальца и элементом. Матрица этих емкостей преобразуется в изображение отпечатка пальца.
2. Чувствительные к давлению сканеры (pressure scanners) - в этих устройствах используются сенсоры, состоящие из матрицы пьезоэлементов.
При прикладывании пальца к сканирующей поверхности выступы папиллярного узора оказывают давление на некоторое подмножество элементов поверхности, соответственно впадины никакого давления не оказывают. Матрица полученных с пьезоэлементов напряжений преобразуется в изображение поверхности пальца.
3. Термо-сканеры (thermal scanners) - в них используются сенсоры, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение (этот эффект также используется в инфракрасных камерах).
При прикладывании пальца к сенсору по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца и преобразуется в цифровое изображение.
Данные типы сканеров являются самыми распространенными. Во всех приведенных полупроводниковых сканерах используются матрица чувствительных микроэлементов (тип которых определяется способом реализации) и преобразователь их сигналов в цифровую форму.
4. Радиочастотные сканеры (RF-Field scanners) - в таких сканерах используется матрица элементов, каждый из которых работает как маленькая антенна.
Сенсор генерирует слабый радиосигнал и направляет его на сканируемую поверхность пальца. Каждый из чувствительных элементов принимает отраженный от папиллярного узора сигнал. Величина наведенной в каждой микроантенне электро-движущая сила (ЭДС) зависит от наличия или отсутствия в близи нее гребня папиллярного узора. Полученная таким образом матрица напряжений преобразуется в цифровое изображение отпечатка пальца.
5. Протяжные термо-сканеры (thermal sweep scanners) - разновидность термо-сканеров, в которых для сканирования (так же как и в оптических протяжных сканерах), необходимо провести пальцем по поверхности сканера, а не просто приложить его.
6. Емкостные протяжные сканеры (capacitive sweep scanners) - используют аналогичный способ покадровой сборки изображения отпечатка пальца, но каждый кадр изображения получается с помощью емкостного полупроводникового сенсора.
7. Радиочастотные протяжные сканеры (RF-Field sweep scanners) - аналогичны емкостным, но используют радиочастотную технологию.
Ультразвуковые сканеры
Ультразвуковое сканирование - это сканирование поверхности пальца ультразвуковыми волнами и измерение расстояния между источником волн и впадинами и выступами на поверхности пальца по отраженному от них эху. Качество получаемого таким способом изображения в 10 раз лучше, чем полученного любым другим, представленным на биометрическом рынке методом. Кроме этого, стоит отметить, что данный способ практически полностью защищен от муляжей, поскольку позволяет кроме отпечатка пальца получать и некоторые дополнительные характеристики о его состоянии (например, пульс внутри пальца).
Основное применение технологии распознавания по отпечаткам пальцев - защита от несанкционированного доступа. Чаще используются в охранных системах и системах учета рабочего времени сотрудников.
Система для контроля доступа и учета времени с распознаванием отпечатков пальца
Система для контроля доступа и учета времени с разпознованием отпечатков пальца - предназначена для автоматизации пропускного режима на охраняемом объекте и учета рабочего времени персонала с применением технологий идентификации человека по биометрическому признаку (отпечатку пальца).
Возможности Системы контроля доступа и учета времени с распознованием отпечатков пальяца:
Контроль и управление доступом - система обеспечивает безопасность, как отдельных помещений, так и всего здания
Предотвращает доступ посторонних людей без необходимости использования ключа.
Устраняет возможность несанкционированного прохода за пользователем прошедшим верификацию.
Позволяет отслеживать перемещение работников по определенным территориям.
При настройке функции «часовой пояс» может контролировать доступ работников к определенным территориям.
Легко интегрируется с дверными замками (оснащен выходом для ЭМ-замка: пост. напр. 12В при 3A).
Учет рабочего времени сотрудников - Система автоматически фиксирует события прихода и ухода, реальное время нахождения сотрудников на рабочем месте. Система учитывает опоздания и переработки, в соответствии с производственным календарем, расписанием и индивидуальным графиком работы каждого сотрудника и/или отдела. Вся информация поступает в единый «Журнал событий», по данным которого формируются все необходимые отчеты
Устраняет возможность ложно зафиксировать посещаемость отсутствующих работников.
Систематически собирает и учитывает время посещаемости.
Входящее в пакет программное обеспечение быстро и эффективно обрабатывает и управляет данными о посещаемости